The Lotka–Volterra equation over a finite ring Z/pZ
نویسندگان
چکیده
The discrete Lotka–Volterra equation over p-adic space was constructed since p-adic space is a prototype of spaces with non-Archimedean valuations and the space given by taking the ultra-discrete limit studied in soliton theory should be regarded as a space with the non-Archimedean valuations given in my previous paper (Matsutani S 2001 Int. J. Math. Math. Sci.). In this paper, using the natural projection from a p-adic integer to a ring Z/pZ, a soliton equation is defined over the ring. Numerical computations show that it behaves regularly. PACS numbers: 05.45.Yv, 02.40.−k, 02.40.Re, 02.60.−x, 05.50.+q
منابع مشابه
ar X iv : n lin / 0 10 30 02 v 1 [ nl in . S I ] 4 M ar 2 00 1 Lotka - Volterra Equation over a Finite Ring
Discrete Lotka-Volterra equation over p-adic space was constructed since p-adic space is a prototype of spaces with the non-Archimedean valuations and the space given by taking ultra-discrete limit studied in soliton theory should be regarded as a space with the non-Archimedean valuations in the previous report (solv-int/9906011). In this article, using the natural projection from p-adic intege...
متن کاملThe matrix realization of affine Jacobi varieties and the extended Lotka-Volterra lattice
Abstract: We study the representative for the gauge equivalence class MF related to certain types of N by N monodromy matrices whose entries are polynomials of a spectral parameter z. Let X be the algebraic curve given by the common characteristic equation for MF . Then the representative corresponds to the matrix realization of the affine Jacobi variety of X . When we relate MF to the Lax matr...
متن کاملStochastic delay Lotka–Volterra model
We reveal in this paper that the environmental noise will not only suppress a potential population explosion in the stochastic delay Lotka–Volterra model but will also make the solutions to be stochastically ultimately bounded. To reveal these interesting facts, we stochastically perturb the delay Lotka–Volterra model ẋ(t) = diag(x1(t), . . . , xn(t))[b + Ax(t − τ)] into the Itô form dx(t)= dia...
متن کاملPermanency and Asymptotic Behavior of The Generalized Lotka-Volterra Food Chain System
In the present paper a generalized Lotka-Volterra food chain system has been studied and also its dynamic behavior such as locally asymptotic stability has been analyzed in case of existing interspecies competition. Furthermore, it has been shown that the said system is permanent (in the sense of boundedness and uniformly persistent). Finally, it is proved that the nontrivial equilibrium point...
متن کاملClassifying Finite 2-nilpotent P-groups, Lie Algebras and Graphs: Equivalent Wild Problems
We reduce the graph isomorphism problem to 2-nilpotent p-groups isomorphism problem (and to finite 2-nilpotent Lie algebras the ring Z/pZ. Furthermore, we show that classifying problems in categories graphs, finite 2-nilpotent p-groups, and 2-nilpotent Lie algebras over Z/pZ are polynomially equivalent and wild.
متن کامل